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Abstract

Both volatility and the tail of stock return distributions are impacted by discontinuities or

large jumps in the stock price process. In this paper, we construct a model-free jump and

tail index by measuring the impact of jumps on the Chicago Board Options Exchange’s VIX

index. Our jump and tail index is constructed from a portfolio of risk-reversals using 30-day

index options, and measures time variations in the intensity of return jumps. Using the index,

we document a 50-fold increase in jump fears during the financial crisis, and that jump fears

predict index returns after controlling for stock return variability.

JEL classification: G1, G12, G13



1 Introduction

Understanding time variation in volatility is important in asset pricing since it impacts the

pricing of both equities and options. It is also of interest to understand whether time variation

in tail risk —the possibility of an extreme return from a discontinuity or large jump in the

stock price process– should be considered an additional channel of risk.1 However, jumps in

the stock price process not only determine the tail of the distribution but also impact stock

return variability. Before one can determine whether there are potentially distinct roles for

stock return variability and tail risk, respectively, it is essential to differentiate one from the

other. In this paper, we address this issue by constructing model-free volatility and tail indices

from option prices that allow researchers to distinguish between the two channels.

Volatility and jump/tail indices already exist in the literature. The most widely used

option-based measure of stock return variability is the Chicago Board Options Exchange’s

VIX. However, as elaborated below, the VIX is not model free and is biased in the presence of

discontinuities, making it difficult to distinguish between volatility and tail risk. As formalized

by Carr and Wu (2003), a model-free measure of jump risk can be constructed from the

pricing of extreme returns using close-to-maturity, deep out-of-the-money (OTM) options. By

combining this theory with extreme value statistics, Bollerslev and Todorov (2011) construct

an “investor [jump] fear index.”

Our first contribution is to show that the Bakshi-Kapadia-Madan (2003; BKM hereafter)

measure of the variance of the holding period return is more accurate than the VIX for mea-

suring quadratic variation—a measure of stock return variability—when there is significant

jump risk, as, for example, for the entire class of Lévy models (e.g., Merton, 1976), and the

stochastic volatility and jump model of Bates (2000). Moreover, if the stock price process has

no discontinuities (e.g., Hull and White, 1987; Heston, 1993), it is about as accurate when

measured from short-maturity options even though the VIX is designed specifically to measure

the quadratic variation of a jump-free process (“integrated variance”).2

1A number of papers have related jump or tail risk to asset risk premia. For example, Naik and Lee (1990),
Longstaff and Piazzesi (2004), and Liu, Pan, and Wang (2005) model jump risk premia in equity prices, while
Gabaix (2012) and Wachter (2012), extending initial work of Rietz (1988) and Barro (2006), relate equity risk
premia to time-varying consumption disaster risk.

2The VIX was constructed to measure the integrated variance using the log-contract based on the analysis of
Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999a, 1999b), and Britten-Jones and Neuberger
(2000) and earlier work by Neuberger (1994) and Dupire (1996). Jiang and Tian (2005) argue in their Proposition
1 that the VIX is an accurate measure of quadratic variation. Carr and Wu (2009) show that the VIX is biased
but use numerical simulations to argue that the bias is negligible. Consequently, a number of recent papers
have used the VIX as a model-free measure of quadratic variation (e.g., Bollerslev, Gibson, and Zhou, 2011;
Drechsler and Yaron, 2011; Wu, 2011).
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Next, we construct a jump and tail index based on the fact that the accuracy of the VIX

deteriorates rapidly when a larger proportion of stock return variability is determined by fears

of jumps. Building on analysis by Carr and Wu (2009), we show that the bias in the VIX is

proportional to the jump intensity. By comparing the integrated variance to the BKM variance,

we can measure the jump-induced bias and construct a model-free tail index. In contrast to

the existing literature, we do not need short-dated options to infer tail risk; we construct our

index from standard 30-day maturity index options.

Technically, our jump and tail index measures time variation in the jump intensity process.

It is determined by higher-order moments of the jump distribution and is therefore statistically

distinguishable from the quadratic variation. Economically, the difference between these two

measures of stock return variability maps into a short position in an option portfolio of risk re-

versals. This option portfolio constitutes the hedge that a dealer in variance swaps (with payoff

defined in terms of the sum of squared returns) should engage in to immunize a short position

from risks of discontinuities. When downside jumps dominate, the price of the risk reversal

portfolio is negative and the integrated variance underestimates the quadratic variation.

We construct our volatility and tail indices from the Standard & Poor’s 500 Index option

data over 1996–2010. We document that the time variation in tail risk is driven primarily by

downside jump fears. At the peak of the financial crisis, fears of jumps in the market were

an extraordinary 50-fold those of the median month. The tail index allows us to precisely

compare the severity of crises over our sample period and reveals that the Long Term Capital

Management (LTCM) crisis had more jump risk than the Asian currency crisis, the 2001–2002

recession, or the prelude to the Iraq war.

Finally, using the volatility and tail indices, we examine the two potential channels of risk.

To do so, we employ predictability regressions following the setups of Bollerslev, Tauchen, and

Zhou (2009) (BTZ hereafter), and Bakshi, Panayotov and Skoulakis (2011) (BPS hereafter).3

BTZ demonstrate that the spread between the VIX and the historical variance predicts

index returns. We first use their framework to examine the economic impact of the jump-

induced bias in the integrated variance. We document that the integrated variance underesti-

mates expected one-year returns by 1.50% because of the jump-induced bias. Using the VIX

to construct the spread results in anomalous findings, including one where the predicted return

in the financial crisis of 2007–2009 is lower than in the previous recession of 2001–2002. The
3There is a long-standing tradition of using predictability regressions (e.g., see Cochrane, 2007, and references

therein). More closely related papers to our motivation which also use predictability regressions are Bollerslev,
Gibson and Zhou (2011), Drechsler and Yaron (2011), and Kelly (2010).
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use of the BKM variance eliminates these anomalies. Our results underscore the importance

of correctly accounting for jumps when estimating stock return variability.

Should the jump-induced tail of the distribution be considered an additional channel of risk?

We document that the tail index is significant after controlling for either the BTZ variance

spread or the forward variance of BPS. Over the entire sample period that includes the financial

crisis, the tail index is significant over medium horizons of six months and above. Importantly,

in the relatively quiet period between the collapse of LTCM and the failure of Lehman Brothers,

the tail index is highly significant at a one-month horizon, indicating that investors’ fears of

downside tail events are incorporated into equity prices even in times of relative tranquility.

The tail risk is also economically significant. Over the entire sample period, while a one

standard deviation increase in the BTZ variance spread predicts an increased excess return of

5.4%, a similar increase in the tail index predicts an increased excess return of over 7%. The

sum total of the evidence indicates that fears of jumps operate through two distinct channels

of stock return volatility and tail risk, respectively.

In related literature, Bakshi, Cao, and Chen (1997), Bates (2000), Pan (2002), and Broadie,

Chernov, and Johannes (2007), among others, demonstrate the significance of jump risk using

parametric option pricing models. Naik and Lee (1990), Longstaff and Piazessi (2004) and Liu,

Pan, and Wang (2005) develop equilibrium option pricing models that specifically focus on

jump risk. Broadie and Jain (2008), Cont and Kokholm (2010), and Carr, Lee, and Wu (2011)

observe, as we do, that jumps bias the VIX. Bakshi and Madan (2006) note the importance of

downside risk in determining volatility spreads.

Empirical evidence that jump risk contributes significantly to the variability of observed

stock log returns under the physical measure has been found by Aı̈t-Sahalia and Jacod (2008,

2009a, 2009b, 2010), Lee and Mykland (2008), and Lee and Hannig (2010), amongst others.

Bakshi, Madan, and Panayotov (2010) use a jump model to model tail risk in index returns

and find that downside jumps dominate upside jumps. Kelly (2010) argues that tail-related

information can be inferred from the cross sections of returns. We add to this literature by

providing, under a risk-neutral measure, a model-free methodology for measuring quadratic

variation and time variation in jump intensity.

Finally, an important segment of the literature focuses on consumption disasters. This

literature, starting with Rietz (1988) and further elaborated by Barro (2006) and Gabaix

(2012), focuses on how infrequent consumption disasters affect asset risk premiums, potentially

providing a channel through which returns are predictable. By assuming that dividends and

consumption are driven by the same shock and by modeling tail risk as a jump process, Wachter
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(2012) shows that the equity premium will depend on time-varying jump risk. Although a

precise correspondence between consumption tail risk and the tail risk inferred from index

options is yet incomplete (see Backus, Chernov and Martin, 2011, for a recent effort), our

findings regarding the importance of downside jump risk broadly support this literature.

The remainder of the paper is organized as follows. Section 2 illustrates our approach using

the Merton jump diffusion model. Section 3 collects our primary theoretical results. Section 4

describes the time-variation in the indices. Sections 5 present our empirical results. The last

section concludes the study.

2 An illustration using the Merton jump diffusion model

We use the Merton (1976) jump diffusion model to motivate the construction of our jump and

tail index. Let the stock price ST at time T be specified by a jump diffusion model under the

risk-neutral measure Q,

ST = S0 +
∫ T

0
(r − λµJ)St− dt+

∫ T

0
σSt− dWt +

∫ T

0

∫
R0

St−(ex − 1)µ[dx, dt], (1)

where r is the constant risk-free rate, σ is the volatility, Wt is standard Brownian motion, R0

is the real line excluding zero, and µ[dx, dt] is the Poisson random measure for the compound

Poisson process with compensator equal to λ 1√
2πσ2

J

e−
1
2
(x−α)2 , with λ as the jump intensity.

From Ito’s lemma, the log of the stock price is

lnST = lnS0 +
∫ T

0

1
St−

dSt −
∫ T

0

1
2
σ2dt+

∫ T

0

∫
R0

(1 + x− ex) µ[dx, dt], (2)

= lnS0 +
∫ T

0
(r − 1

2
σ2 − λµJ) dt+

∫ T

0
σ dWt +

∫ T

0

∫
R0

xµ[dx, dt]. (3)

Denote the quadratic variation over the period [0, T ] as [lnS, lnS]T . The quadratic variation

of the jump diffusion process is (e.g., Cont and Tankov, 2003)

[lnS, lnS]T =
∫ T

0
σ2dt+

∫ T

0

∫
R0

x2µ[dx, dt]. (4)
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First, we derive a relation between EQ
0 [lnS, lnS]T and varQ

0 (lnST /S0). From Ito’s lemma, the

square of the log return, (lnSt/S0)2 is,

(lnST /S0)2 =
∫ T

0
2 ln(St−/S0) d lnSt + [lnS, lnS]T . (5)

The expected value of the stochastic integral in equation (5) is (see Appendix A),

EQ
0

∫ T

0
2 ln(St−/S0) d lnSt =

(
(r − 1

2
σ2 − λµJ) + λα

)2

T 2,

= (EQ
0 ln(St−/S0))2. (6)

Substituting equation (6) in equation (5), and rearranging,

EQ
0 [lnS, lnS]T = EQ

0 (lnST /S0)2 −
(

EQ
0 (lnST /S0)

)2
,

= varQ
0 (lnST /S0) . (7)

Equation (7) states the quadratic variation is equal to the variance of the holding period

return for the Merton model. From Bakshi, Kapadia and Madan (2003), varQ
0 (lnST /S0) can

be estimated model-free from option prices, and, therefore, so can the quadratic variation.

Next, with some abuse of notation, denote EQ
0 [lnS, lnS]cT as the estimate of the expectation

of integrated variance, EQ
0

∫ T
0 σ2dt, under the assumption that the stock return process has no

discontinuities. Carr and Madan (1998), Demeterfi, Derman, Kamal and Zou (1999a, 1999b),
and Britten-Jones and Neuberger (2000) demonstrate that, for a purely continuous process,

EQ
0 [lnS, lnS]cT = 2 EQ

0

[∫ T

0

1
St
dSt − lnST /S0

]
. (8)

The RHS of equation (8) can be replicated using options and, therefore, the integrated variance can be

estimated. The VIX is based on this analysis.

But, in the presence of discontinuities, from equation (2),

2EQ
0

[∫ T

0

1
St−

dSt − lnST /S0

]
= EQ

0

∫ T

0

σ2dt− 2EQ
0

∫ T

0

∫
R0

(1 + x− ex)µ[dx, dt],

= EQ
0 [lnS, lnS]T − 2EQ

0

∫ T

0

∫
R0

(
1 + x+

x2

2
− ex

)
µ[dx, dt]. (9)

Thus, EQ
0 [lnS, lnS]cT ≡ 2 EQ

0

[∫ T
0

1
St−

dSt − lnST /S0

]
is a biased estimator of both the quadratic
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variation and the integrated variance.4

But the BKM variance does measure the quadratic variation. Replacing EQ
0 [lnS, lnS]T by

varQ
0 (lnST /S0) in equation (9), we obtain,

varQ
0 (lnST /S0)− 2 EQ

0

[∫ T

0

1
St−

dSt − lnST /S0

]
= 2EQ

0

∫ T

0

∫
R0

(
1 + x+

x2

2
− ex

)
µ[dx, dt].

(10)

Equation (10) states that the difference between the variance of the holding period return

and the integrated variance measure is determined solely by discontinuities in the stock price

process. We use the time-variation in this difference to construct a model-free jump and tail

index.

3 Measuring stock return variability and tail risk

3.1 Quadratic variation and variance of the holding period return

Let the log stock price lnSt at time t, t ≥ 0, be a semimartingale defined over a filtered

probability space (Ω,F , {Ft},Q), with S0 = 1. Denote the quadratic variation over a horizon

T > 0 as [lnS, lnS]T and the variance of the holding period return as varQ
0 (lnST /S0). Our

first result characterizes the relation between these two measures of stock return variability.

Proposition 1 Let EQ
0 [lnS, lnS]T and varQ

0 (lnST /S0) be the expected quadratic variation and

variance of the holding period return, respectively, over a horizon T <∞. Denote the difference

between the two measures of variability as D(T ) = varQ
0 (lnST /S0)− EQ

0 [lnS, lnS]T . Then,

D(T ) = EQ
0

[∫ T

0
2 lnSt−/S0 d lnSt

]
−
(

EQ
0 (lnST /S0)

)2
. (11)

D(T ) can be further characterized as follows:

i. Suppose the log return process decomposes as lnSt/S0 = At +Mt, where At is a contin-

uous finite variation process with A0 = 0, and Mt is a square-integrable martingale with
4Our analysis differs from that of Carr and Madan (1998), Demeterfi, Derman, Kamal, and Zou (1999a,

1999b), and Britten-Jones and Neuberger (2000) because we consider a contract that pays the square of the log
return (equation 5), as opposed to a contract that pays the log return (equation 8). Earlier literature focused
on the log-contract because, under the assumption of no discontinuities, the analysis indicated how a variance
swap could be replicated. Unfortunately, as we see, the log-contract does not hedge nor price the variance swap
in the presence of discontinuities.
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M0 = 0. Then, if At is deterministic, D(T ) = 0 and the two measures of variability are

equivalent.

ii. Suppose the log return process is a two-dimensional diffusion with stochastic volatility,

d lnSt = (r − 1
2
σ2
t ) dt+ σt dW1,t, (12)

dσ2
t = θ[σ2

t ] dt+ η[σ2
t ] dW2,t, (13)

where dW1,t and dW2,t are standard Brownian motions with correlation ρ. Then, as

T → 0, 1
T D(T ) = O(T ). Moreover, if ρ = 0, then 1

T D(T ) = O(T 2).

Proof: See Appendix A.

Proposition 1 fully characterizes the relation between the two measures of stock return

variability. First, the proposition indicates that the two measures of variability are equivalent

when the log return process can be decomposed into a martingale and a deterministic drift. In-

tuitively, this is because the deterministic drift adds neither to the quadratic variation (because

it is a continuous finite variation process) nor to the variance (because it is deterministic).5

A Lévy process with a characteristic function given by the Lévy–Khintchine theorem can

be decomposed into a deterministic drift and a martingale. Therefore, quadratic variation and

the variance of the holding period return are equivalent for the entire class of Lévy processes.6

Example 1 Merton (1976) model:

Continuing the illustration of Section 2, observe that the log return for the Merton model can

be decomposed as

lnSt/S0 =
(

(r − 1
2
σ2) + λα

)
t+Mt,

= At +Mt, (14)

where Mt is the sum of a continuous and pure jump martingale. The drift At is deterministic

for this model and therefore the quadratic variation and variance are equivalent. We now arrive

at the conclusion without explicitly evaluating the stochastic integral in equation (6).
5We thank G. Lowther for this intuition.
6This class includes many commonly used models, including the geometric Brownian motion (Black and

Scholes, 1973), jump diffusion models (e.g., Merton, 1976; Kou, 2002), and infinite activity Lévy processes,
such as the variance gamma process of Madan and Seneta (1990), the normal inverse Gaussian process of
Barndorff-Nielson (1998), and the finite-moment stable process of Carr, Geman, Madan, and Yor (2002). For
these models, by the Lévy-Khintchine theorem, the characteristic function is determined by (γ, σ2, ν), so that
E0e

iu lnSt/S0 = etψ(u), where ψ(u) = iγu− 1
2
σ2u2 +

R
R0

`
eiux − 1− iux1[|x|<1]

´
ν[dx].
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The drift of the log return is stochastic in a stochastic volatility model such as Heston’s

(1993). Because the variance of the holding period return accounts for the stochasticity of

the drift, it differs from the quadratic variation by D(T ). The second part of the proposition

shows that the annualized D(T ) is O(T ) for small T for stochastic volatility models. In the

special case when the volatility process is uncorrelated with the log return process, as in Hull

and White (1987), ρ = 0, D(T ) reduces with T even faster. Indeed, for ρ = 0, we can further

characterize D(T ) (see Appendix A) as

D(T ) =
1
4

varQ
0

∫ T

0
σ2
t dt. (15)

When an analytical solution is available for varQ
0

∫ T
0 σ2

t dt, D(T ) can be estimated precisely.

Example 2 Heston (1993) model:

For the Heston model, dσ2
t = κ(θ − σ2

t ) + ησtdW2,t, Bollerslev and Zhou (2002) demonstrate

in equation (A.5) in their appendix that varQ
0

∫ T
0 σ2

t dt = A(T )σ2
0 +B(T ), where

A(T ) =
η2

κ2

(
1
κ
− 2e−κTT − 1

κ
e−2κT

)
, (16)

B(T ) =
η2

κ2

(
θT
(
1 + 2e−κT

)
+

θ

2κ
(
e−κT + 5

) (
e−κT − 1

))
. (17)

Expanding around T = 0 and simplifying yields

varQ
0

∫ T

0
σ2
t dt = η2(θ − σ2

0)T 3 +O(T 4).

Therefore, for the Heston model with ρ = 0 and σ2
0 = θ, 1

TD(T ) = O(T 3).

The example illustrates that, depending on parameter values, D(T ) may reduce with T even

faster than noted in Proposition 1.

When ρ 6= 0 (because we can write W2,t = ρW1,t +
√

1− ρWσ,t, where Wσ,t is independent

of W1,t), D(T ) has an additional component proportional to ρ. Below we use numerical exper-

iments to estimate the magnitude of D(T ) for ρ 6= 0 and show that it is negligible for typical

parameter values.

In their Proposition 1, BKM demonstrate that the variance of the holding period return

can be estimated model free from option prices. Thus, using the BKM methodology, we can

precisely estimate the quadratic variation for Lévy processes and, to a very good approximation,
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using short-maturity options, for stochastic volatility diffusions.

3.2 Quadratic variation, integrated variance, and jump risk

To derive a measure of jump risk, we put more structure on the stock return process. Let the

log of the stock price be a general diffusion with jumps:

lnST = lnS0 +
∫ T

0
(at −

1
2
σ2
t ) dt+

∫ T

0
σt dWt +

∫ T

0

∫
R0

xµ[dx, dt], (18)

where the time variation in σt is left unspecified while at is restricted to ensure that the

discounted stock price is a martingale. Let the Poisson random measure have an intensity

measure µ[dx, dt] ≡ νt[dx]dt. Given our focus on tail risk and because we have already included

a diffusion component, we assume that
∫
R0 ν[dx] < ∞ and that all moments

∫
R0 x

nν[dx],

n = 1, 2, ..., exist.

As in Carr and Madan (1998), Demeterfi, Derman, Kamal and Zou (1999a, 1999b), and

Britten-Jones and Neuberger (2000), we define EQ
0 [lnS, lnS]cT as the (VIX) measure of inte-

grated variance under the assumption that the process is continuous:

EQ
0 [lnS, lnS]cT ≡ EQ

0

[
2
(∫ T

0

dSt
St
− ln

ST
S0

)]
. (19)

In the absence of discontinuities in the stock return process, EQ
0

[
2
(∫ T

0
dSt
St
− ln ST

S0

)]
= EQ

0

∫ T
0 σ2

t dt.

If there are discontinuities, Carr and Wu (2009) show in their Proposition 1 that the difference

between EQ
0 [lnS, lnS]T and EQ

0 [lnS, lnS]cT is determined by the jump distribution,

EQ0 [lnS, lnS]T − EQ
0 [lnS, lnS]cT = 2EQ

0

∫ T

0

∫
R0

ψ(x)µ[dx, dt], (20)

where ψ(x) = 1 + x+ 1
2x

2 − ex.

From iterated expectations, the right-hand side of equation (20) is determined by the

compensator of the jump process. Tail risk is also determined by the expectation of jump

intensity because in the presence of jumps, the tail of the stock return distribution is determined

by (large) jumps.

Proposition 2 Let the log price process be specified as in equation (18). Let the intensity

measure νt[dx] be of the form

νt[dx] = λtf(x)dx,

9



where λt is the jump arrival intensity of a jump of any size with jump size distribution f(x).

Then,

EQ0 [lnS, lnS]T − EQ
0 [lnS, lnS]cT = 2 Ψ(f(x)) Λ0,T , (21)

where

Λ0,T = EQ
0

∫ T

0
λtdt, (22)

with Ψ(f(x)) =
∫
R0 ψ(x)f(x)dx and ψ(x) = 1 + x+ 1

2x
2 − ex.

Proof: See Appendix A.

Proposition 2 states that the difference between quadratic variation and the measure of

integrated variance over an interval T is proportional to the expectation of the number of

jumps over that interval. Because Ψ(·) is determined by higher-order moments (n ≥ 3) of the

jump distribution, the difference is clearly distinguished from quadratic variation. Dividing

equation (21) by EQ
0 [lnS, lnS]T , we can measure the time variation in the contribution of

discontinuities to the total quadratic variation (e.g., Bollerslev and Todorov, 2011).

Proposition 2 can be generalized to allow for upside and downside jumps. Defining the in-

tensity measures for upside and downside jumps as ν+[x] = λtf
+(x)dx and ν−[x] = λtf

−(x)dx,

we now obtain

EQ0 [lnS, lnS]T − EQ
0 [lnS, lnS]cT = 2

(
Ψ+ + Ψ−

)
Λ0,T , (23)

where Ψ+ ≡
∫
R+ ψ(x)f+(x)dx and Ψ− ≡

∫
R− ψ(x)f−(x)dx. Under this specification, the dom-

inance of downside versus upside jumps determines the sign of EQ0 [lnS, lnS]T −EQ
0 [lnS, lnS]cT .

To illustrate, consider the model of Bakshi and Wu (2010) with a double exponential jump

size distribution (Kou, 2002):

f+(x) =

{
e−β+|x|, x > 0,

0, x < 0;
(24)

f−(x) =

{
0, x > 0,

e−β−|x|, x < 0;
(25)

We can explicitly evaluate Ψ(f+(x)) and Ψ(f−(x)) to observe that EQ0 [lnS, lnS]T−EQ
0 [lnS, lnS]cT

is positive (negative) when β+ >> β− (β− >> β+). Intuitively, from its definition in Propo-

sition 2, the magnitude of Ψ is determined to first order by the negative of the third moment

of the jump size distribution. When downside jumps dominate, the third moment is negative

and EQ0 [lnS, lnS]T − EQ
0 [lnS, lnS]cT > 0; that is, the integrated variance underestimates the
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true quadratic variation.

3.3 Numerical analysis for the stochastic volatility and jump (SVJ) model

From Proposition 1, although varQ
0 (lnST /S0) measures quadratic variation precisely for Lévy

processes, its accuracy for stochastic volatility models depends on the maturity of options cho-

sen to estimate the variance. In developing the tail index, we are especially interested in using

options of maturity 30 days. Therefore, before proceeding further, we conduct numerical sim-

ulations to compare the accuracy with which the variance (measured by BKM) and integrated

variance (measured by the VIX), respectively, estimate quadratic variation.

Let V be the annualized variance, V = 1
T varQ

0 (lnST /S0) = 1
T

(
EQ

0 (lnST /S0)2 − µ2
0,T

)
,

where µt,T = EQ
0 lnST /St. From BKM, the price of the variance contract is estimated from

OTM calls and puts of maturity T . Denoting C(St;K,T ) and P (St;K,T ) as the call and put
of strike K and T as the remaining time to expiration, BKM demonstrate that

e−rTV =
1
T

[∫
K>S0

2(1− ln(K/S0))
K2

C(S0;K,T )dK +
∫
K<S0

2(1 + ln(S0/K))
K2

P (S0;K,T )dK − e−rTµ2
0,T

]
,

(26)

where r is the constant risk-free rate.

Similarly, let the annualized integrated variance be denoted IV = 1
T EQ

0 [lnS, lnS]cT . For a

continuous stochastic process, IV can also be estimated from OTM calls and puts as

e−rT IV =
2
T

[∫
K>S0

1
K2

C(S0;K,T )dK +
∫
K<S0

1
K2

P (S0;K,T )dK − e−rT
(
erT − 1− rT

)]
.

(27)

Demeterfi, Derman, Kamal, and Zou (1999b) use this particular formulation (their equation

(26)), and Carr and Madan (1998) and Britten-Jones and Neuberger (2000) use equivalent but

slightly different formulations.

In Table 1, we compare the theoretical quadratic variation, EQ
0 [lnS, lnS]T , with those

estimated from option prices using V and IV, respectively, for the Merton (1974) jump diffusion

model and the SVJ model of Bates (2000). Except for the initial variance (σ2
0) and the mean

of the jump size distribution (α), we calibrate the parameters to those empirically estimated

by Pan (2002). The initial volatility and the mean of the jump size distribution are adjusted

to vary the contribution of the variability from jumps to the total variance from zero to 90%.

Panel A provides the comparison for the Merton model. For the Merton jump diffusion

model, V measures the quadratic variation perfectly, but IV does so with error because of jump
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risk. The error increases as jumps contribute a larger fraction to the total variance.

Panel B provides numerical results for the SVJ model. Because the drift is stochastic,

V measures the quadratic variation with a (small) error. The maximum error is when there

are no jumps, and is only 0.61% in relative terms. That is, while the true
√

[lnS, lnS]T is

20%, the BKM volatility estimate is 20.05%. As the contribution of jumps increases, V is

even more accurate. In contrast, IV becomes less accurate as the contribution of jumps to

return variability increases. When the contribution of jumps to the variance is below 20%, the

relative error is less than 1% of the variance, but it increases manifold as jump risk increases.

For example, when jumps contribute over 70% to the total variance,
√

IV is 19% instead of

the correct 20%, an economically significance bias.

Proposition 1 notes that an increase in the magnitude of ρ makes V less accurate. To check,

we consider a correlation of ρ = −0.90. Even for this extreme case, the error is negligible. At

worst,
√

V gives an estimate of 20.09% instead of the correct 20%. The bias is well within the

bounds of accuracy with which we can estimate risk-neutral densities using option prices.

In summary, in the presence of jumps, the BKM variance measures quadratic variation

more accurately than the integrated variance since it correctly accounts for jumps, while the

stochasticity of the drift adds negligible error at short maturities. When jumps contribute

less than 20% to the variance, both V and IV accurately estimate the quadratic variation.7

However, with increasing jump risk, IV gets progressively less accurate.

3.4 Formalizing the jump and tail index, JTIX

From Propositions 1 and 2, the difference between the variance and the integrated variance

is the sum of two components, the first determined by the stochasticity of the drift and the

second determined by jump risk. On an annualized basis,

1
T

(
varQ

0 (lnST /S0)− EQ
0 [lnS, lnS]cT

)
=

1
T

(
EQ

0

∫ T

0
lnST /S0 d lnSt − EQ

0 (lnST /S0)2
)

+
2
T

ΨΛ0,T .

(28)

Proposition 1 combined with our simulation evidence indicates that the impact of the stochas-

ticity of the drift (the first term) can be neglected for standard jump diffusion models for
7Here, our analysis concurs with that of Jiang and Tian (2005) and Carr and Wu (2009): The parameteri-

zations chosen in their numerical experiments correspond to (low) jump contributions of 14% and 11.7% to the
quadratic variation, respectively. When jump risk is of low economic importance, we can accurately measure
quadratic variation using either the VIX or the BKM variance.
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short-maturity options, that is,

1
T

(
varQ

0 (lnST /S0)− EQ
0 [lnS, lnS]cT

)
≈ 2
T

ΨΛ0,T . (29)

Equation (29) states that the time variation in the difference between the variance and in-

tegrated variance is determined by the time variation in jump intensity. Our jump and tail

index, JTIX, is motivated by equation (29). Defining ĴTIX = V− IV using equations (26) and

(27), we obtain

ĴTIX = V−IV =
2
T
erT

[∫
K<S0

ln(S0/K)
K2

P (S0;K,T ) dK −
∫
K>S0

ln(K/S0)
K2

C(S0;K,T ) dK
]
+ᾱ,

(30)

where ᾱ = 2
T (erT − 1− rT )− 1

T µ
2
0,T . Because ᾱ is small, ĴTIX is primarily determined by the

OTM option portfolio represented by the first two terms of equation (30). Economically, the

option portfolio comprising the tail index is a short position in a risk reversal and the hedge

that a dealer in (short) variance swaps would buy to protect against the risk of discontinuities.

Our jump and tail index, JTIX, is constructed as the 22-day moving average

JTIXt =
1
22

22∑
i=1

ĴTIXt−i+1. (31)

As in Bollerslev and Todorov (2011), we use a 22-day moving average to reduce estimation

errors. To validate and investigate the economic significance of JTIX, we pose the following

questions.

1. Is JTIX = 0 (V ≈ IV)?

The first question we consider is whether jump risk is significant. This question is equivalent

to asking whether the VIX is an accurate estimator of quadratic variation. When jump risk is

negligible, V and IV are approximately equal and JTIX is close to zero.

2. Is there time variation in JTIX and is the time variation related to jump risk?

If the difference between V and IV is related to λt, then it should increase in periods when

fears of jumps are higher. If downside jumps are more prevalent than upside jumps, we expect

the time variation in the jump and tail index to be countercyclical and JTIX to be especially

high in times of severe market stress.

3. What are the channels for jump risk?

Our primary question centers on whether jump risk is important for predicting market returns.

Assuming it is, we are interested in understanding the channel through which jump risk is sig-
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nificant. Does jump risk impact market returns through the contribution of jumps to volatility

or through the impact of jumps on the tail of the distribution?

In investigating these questions, we follow BTZ and BPS. BTZ demonstrate that the vari-

ance spread, VS, defined as the difference between the integrated variance and the past realized

variance, VSt = IVt−RVt−1, predicts index returns.8 BPS find that the forward variance also

predicts short-horizon returns. Both set of results indicate that there is useful information in

option-based estimates of stock return variability.

We proceed as follows. First, following BTZ, we investigate whether the contribution of

jumps to stock return variability is economically important. If it is important to correctly

account for jump risk, then V − RV will be more significant than IV − RV in predicting

index returns. Second, we consider whether tail risk is important in addition to stock return

variability for predicting index returns. If tail risk is a separate channel, then JTIX should

be significant in addition to the variance spread of BTZ or the forward variance of BPS.

Together, the exercises allow us to understand whether jump risk is significant through one or

both channels of volatility and tail risk.

4 The jump and tail index

To construct the volatility indices and the tail index, we use option prices on the S&P 500

(SPX) over the sample period of January 1996 to October 2010. The options data, dividend

yield for the index, and zero coupon yield are from OptionMetrics. We clean the data with

the usual filters, the details of which are provided in Appendix B.

We construct the volatility and tail indices as follows. First, we obtain option prices across a

continuum of strikes. Following Jiang and Tian (2005) and Carr and Wu (2009), we interpolate

the Black–Scholes implied volatility across the range of observed strikes using a cubic spline,

assuming the smile to be flat beyond the observed range of strikes. Next, we linearly interpolate

the smiles of the two near-month maturities to construct a 30-day implied volatility curve for

each day. The interpolated implied volatility curve is converted back to option prices using

the Black–Scholes formula. The daily volatility indices, V and IV, are computed using the

BKM and VIX formulas, equations (26) and (27), respectively. Finally, the tail index JTIX is

constructed as the 22-day moving average of V− IV, as noted in equation (31).
8BTZ suggest that the variance spread is important in predicting index returns because it measures the

variance risk premium. Technically, the variance risk premium (Bakshi and Kapadia, 2003; Carr and Wu, 2009)
is the negative of the difference between the risk-neutral variance and the variance realized over the remaining
maturity of the option, that is, −(Vt − RVt) or -(IVt − RVt). To avoid confusion, we call it a variance spread.
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Figure 1 compares the two constant maturity volatility indices, the holding period volatility,

and the integrated volatility by plotting
√

V−
√

IV over our sample period of January 1996 to

October 2010 with a daily frequency. The plot demonstrates that V is always greater than IV.

On average, over this period,
√

V is 23.4%, which is 0.5% (volatility points) higher than
√

IV
on an annualized basis. The results are consistent with our expectation that when downside

jumps dominate, the integrated variance will underestimate the quadratic variation.

Figure 2 plots the tail indices, JTIX, and JTIX/V. The plot of JTIX shows that jump

risk is intimately associated with times of crisis and economic downturns, with a manifold

increase in jump risk. The most prominent spike occurs in October of 2008, with a more than

50-fold increase in jump risk compared with that of the median day over the sample period.

Additional spikes occur in the period leading up to the Iraq war, the dot-com bust of 2001, the

Russian bond and LTCM crises in 1998, and the Asian currency crisis in 1997. Unlike the two

volatility indices (especially the integrated variance measure), the jump and tail index clearly

differentiates between the 2001 recession and the LTCM crisis: The LTCM crisis has twice

the tail risk as the aftermath of the dot-com bubble. The tail index also captures the sharp

increase in tail risk in November of 1997, coincident with the crash in the Seoul stock market

during the Asian currency crisis. Interestingly, excepting the Iraq war, all the sharp increases

in tail risk correspond to the handful of financial crises that occurred in our sample period.

Extending the popular analogy of the Chicago Board Options Exchange VIX to a fear index,

JTIX can be viewed as an index of extreme fear.

To sharpen the distinction between the holding period variance and the integrated variance,

we also plot JTIX/V. The plot indicates that IV underestimates market variance by over 15%

at the peak of the recent financial crisis. If we use the numerical analysis of Table 1 as a guide,

this magnitude of underestimation suggests that jump risk may comprise over 80% of stock

return variability at the peak of the crisis.

The discussion in Section 3.2 noted that if the intensity measure differs for downside and

upside jumps, ν+[x] = λtf
+(x)dx and ν−[x] = λtf

−(x)dx, then an increase in λt skews the

jump size distribution further to the left or right, respectively, depending on whether downside

or upside jumps dominate. The jump and tail index captures (to first order) the left (right) skew

through the relative pricing of OTM puts and calls—the short risk reversal option portfolio

in equation (30). To further grasp the relative importance of downside and upside jumps, we

decompose JTIX ≈ JTIX−− JTIX+, where JTIX− and JTIX+ correspond to the put and call
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portfolios, respectively, of the risk reversal portfolio:

JTIX− =
2
T
erT

∫
K<S0

(
ln(S0/K)

K2

)
P (S0;K,T ) dK, (32)

JTIX+ =
2
T
erT

∫
K>S0

(
ln(K/S0)

K2

)
C(S0;K,T ) dK. (33)

Figure 3 plots JTIX+ and JTIX−. Comparing Figures 3 and 2 confirms that the time variation

in JTIX is driven by OTM put prices, that is, downside jump risk. Economically, the price of

the risk reversal portfolio is driven by time variation in OTM put prices. Interestingly, using

risk-reversals in currency options, Bakshi, Carr, and Wu (2008) also find evidence of one-sided

jump risk.

In Figure 4, we compare JTIX with the (negative of) Bollerslev and Todorov’s (2011)

fear index (-BT).9 The BT index measures the difference between the variance risk premiums

associated with negative and positive jumps, respectively, and is estimated from short-dated

deep OTM options. Not only are both indices highly correlated, but they also show similar

peaks identifying the major financial crises. Not surprisingly, there is a close link between

investor fears noted in the jump variance risk premium and time-varying jump intensity Λ0,T .

The evidence from the 30-day volatility and tail indices is consistent with the initial two

hypotheses set up in Section 3.4; V is consistently different from IV and JTIX is higher in

times of economic stress and times of financial crises. To verify that these observations are

robust, we present evidence in Table 2 from options of remaining maturity ranging from nine

to 30 days. For this exercise, we use monthly data. Table 2 reports statistics for
√

V,
√

IV,

and the differences ∆ =
√

V−
√

IV and V− IV, as well as the realized volatility,
√

RV, for each

maturity. On average, across the entire sample period,
√

V is larger than
√

IV by a statistically

significant 0.49% (annualized) for 30-day options, consistent with our earlier results using the

constant-maturity volatility indices of Figure 1. This difference is twice as large in recessions.

The results for maturities ranging from nine to 23 days present a consistent picture, confirming

that V is statistically greater than IV for all maturities.

5 Channels of jump risk

We undertake two exercises in this section. First, we ascertain whether it is economically

important to correctly account for jump risk in estimating stock return variability. Second,
9 We thank Tim Bollerslev and Viktor Todorov for sharing their fear index.
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we consider whether the tail should be considered an additional channel for jump risk after

accounting for stock return variability.

5.1 Setup for predictability regressions

Our basic setup follows that of BTZ, who demonstrate that the spread between the integrated

variance and historical variance, IVt −RVt−1, predicts market excess returns after controlling

for the usual set of traditional predictors. The predictive regression is specified as

Rt+j − rft+j = α+ β1 · (VSt) + β2 · (Tail Index) + Γ′ · Z̄t + εt, (34)

where Rt+j denotes the log return of the S&P 500 from the end of month t to the end of month

t + j, rft+j denotes the risk-free return for the same horizon, and Z̄t denotes the commonly

used predictors, discussed further below. We alternatively define VSt as either Vt − RVt−1

or IVt − RVt−1. In this base specification, we also include the tail index as either JTIX or

JTIX/V. All variables are sampled at the end of the month. We use five different horizons,

ranging from one month to two years.

For common predictors Z̄t, we include the earnings or dividend yield, the term spread,

and the default spread. The term spread and default spread are included to control for any

predictable impact of the business cycle.10 Quarterly price–earnings ratios and dividend yields

for the S&P 500 are from Standard & Poor’s website. When monthly data are not available,

we use the most recent quarterly data. The term spread (TERM) is defined as the difference

between 10-year T-bond and three-month T-bill yields. The default spread (DEF ) is defined as

the difference between Moody’s Baa and Aaa corporate bond yields. Data needed to calculate

the term spread and the default spread are from the website of the Federal Reserve Bank of St.

Louis. To be consistent with BTZ, we download the monthly realized variance RV calculated

from high-frequency intra-day return data from Hao Zhou’s website.

Table 3 describes the data: Panel A reports the summary statistics of our variables and

Panel B reports their correlation matrix. The tail index JTIX is contemporaneously negatively

correlated with index excess returns, and positively correlated with historical realized volatility.

With the variance spreads, the tail index JTIX has low correlations. The correlations of JTIX

with V−RV and IV−RV are 0.20 and 0.00, respectively. The results are similar for JTIX/V.
10An earlier version of this paper included the quarterly CAY , as defined by Lettau and Ludvigson (2001) and

downloaded from their website, and RREL, the detrended risk-free rate, defined as the one-month T-bill rate
minus the preceding 12-month moving average. The results were similar to the more parsimonious regression
used in the current version.
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In contrast, JTIX and JTIX/V are more highly correlated with the default spread DEF , with

correlations of 0.70 and 0.58, respectively.

The last row of Panel A of Table 3 reports first-order autocorrelations for the control

variables. As noted in previous literature, autocorrelations are extremely high for many of the

control predictors—0.97 for the price-to-dividend ratio and 0.98 for the term spread—raising

concerns about correct inference. In contrast, Panel C documents that V − RV, IV − RV,

JTIX, and JTIX/V have much lower autocorrelations, and, in Panel D, the Phillips–Perron

unit root test rejects the null hypothesis of a unit root in the tail index and variance spreads.

5.2 Jump-induced bias in volatility

5.2.1 Statistical significance

Table 4 reports the regression results for each horizon. We report t-statistics based on Hodrick’s

(1992) 1B standard errors under the null of no predictability.

In univariate regressions, both V−RV and IV−RV are consistently significant at horizons

up to one year. As noted by BTZ, the highest R-squared values are at the three- to six-month

horizons. Control variables have lower significance on a univariate basis. Corroborating the

results of BTZ, on a univariate basis, the variance spread has higher predictive power than

variables used in the previous literature and is often the only variable that is significant.

To examine the importance of accounting for jump risk in the estimation of stock return

variability, we focus on the multivariate specifications. First, we compare the results when VS
is defined as V−RV with those when the variance spread is defined as IV−RV. The Hodrick

t-statistics and adjusted R-squared values in the multivariate regressions are higher for V−RV
for all horizons. For example, for the one-year horizon, the adjusted R-squared value increases

from 24.4% when IV is used to define the variance spread to 26.5% when V is used to define

the variance spread. The coefficient of V−RV at 1.97 is almost 20% higher than the estimated

coefficient of 1.67 for IV− RV.

In specifications [10] and [11] of Table 4, we add JTIX and JTIX/V to the regression

specification with IV−RV. Here JTIX is significant at the 90% level for the six-month horizon

and significant at the 95% levels for one- and two-year horizons. The results are slightly more

significant for JTIX/V. We find JTIX/V to be significant at the 95% level for the six-month

and two-year horizons and at the 90% level for the one-month and one-year horizons. The sign

of the coefficients for both JTIX and JTIX/V is positive, indicating that an increase in the
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tail index predicts higher expected excess returns.

It is worth emphasizing that the significance of the tail indices in specifications [10] and

[11] with IV−RV does not definitively indicate that both channels of stock return variability

and tail risk are significant because IV is biased in the presence of jumps. Nevertheless, as we

shall discuss below, the coefficients of JTIX and JTIX/V are too large to be explained solely

by a jump-induced bias in IV.

5.2.2 Economic significance

To understand the economic significance of the jump-induced bias in IV, we consider the return

predicted by each measure of variance spread. Panel A of Table 5 tabulates the variance spread

in terms of both V− RV and IV− RV. Over the entire sample period, on average, V− RV is

0.34% (variance points) higher than IV−RV and higher by 0.91% (variance points) in recession

months. The measure of integrated variance particularly underestimates the variance spread

in the recent financial crisis because of the extraordinarily high degree of jump risk in this

period; V− RV is 48% greater than IV− RV.

Panel B of Table 5 reports the magnitude of the excess return predicted by V − RV and

IV − RV, respectively. The returns are predicted using the coefficients estimated in Panel

D of Table 4 for each of the variance spreads for the one-year horizon (specifications [8] and

[9]). Over the entire sample period, the one-year excess return predicted by V − RV is 6.1%,

compared with 4.6% as predicted by IV−RV. As noted earlier, jump risk reached its highest

level in the most current recession. The excess return predicted by V−RV in the most recent

recession is 7.9%, compared with 4.7% as predicted by IV − RV. The return predicted by

IV−RV during the financial crisis is lower than that predicted for the prior recession. This last

set of results underscores the economic importance of jump risk. Not correctly accounting for

jump risk in the measurement of stock return variability leads to the extraordinary conclusion

that the financial crisis period had lower risk than the 2001–2002 recession.

Finally, we compare the difference between the excess returns predicted by V − RV and

IV − RV with that predicted by JTIX. As noted earlier, the annualized return predicted by

V − RV is 1.50% higher than the return predicted by IV − RV. In contrast, the annualized

return predicted by JTIX over the entire sample period (using the coefficient estimated in

specification [10] of Panel D of Table 5) is about 3.5%. The economic significance of the tail

index is too high to be solely explained by a jump-induced bias in IV. The evidence suggests

that there is an additional channel through which jump risk is important.
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5.3 Tail risk as an additional channel

Having ascertained the significance of jumps in its contribution to stock return variability, we

next consider whether the jump-induced tail should be considered an additional channel for

jump risk. As our first exercise, we include the tail index in the regression specification of

equation (34) with the variance spread computed using the BKM variance. Given that the

BKM variance accounts for discontinuities, the tail index should not be significant if the only

channel for jump risk is its contribution to volatility.

We report the results in Table 6. As in previous tables, V− RV is statistically significant

for all horizons. Including the tail index does not impact the economic significance of V−RV;

the signs and magnitudes of the estimated coefficients remain about the same.

How do the results with respect to the tail index compare with those previously reported

in Table 4? The magnitude of the coefficients for JTIX and JTIX/V reduces slightly, reflecting

absence of jump-bias in the estimate of stock return variability. Nevertheless, JTIX remains

significant at the 95% level for the one-year horizon and at the 90% level for the two-year

horizon. The results for JTIX/V are similar: JTIX/V is significant at the 95% level for the

six-month horizon and at the 90% level for the one- and two-year horizons. The coefficients are

economically significant. Using the one-year horizon as an illustration, a one standard deviation

increase in JTIX increases annualized expected excess return by over 7%. In comparison, a

one standard deviation in V− RV increases annual expected return by 5.4%.

BTZ observe that, in contrast to the variance spread, the VIX by itself does not predict

returns. We confirm their analysis by including IV in our regression; the coefficient of IV
included in the regression with VS and JTIX or JTIX/V is insignificant. Nevertheless, the

question arises as to whether it is possible to use information in IV to improve upon JTIX.

Although the tail index is economically different from the VIX —JTIX is approximately a

short position in a portfolio of risk reversals while the integrated variance is a position in a

portfolio of strangles— economic stress affects both indices similarly. In times of stress, the

prices of all OTM options increase (increasing IV) and OTM puts increase more than OTM

calls (increasing JTIX).

To investigate, we extract the principal components from the daily time series of IV and

JTIX and find the component that is more highly correlated with JTIX. For simplicity, we

call this principal component the jump factor, even though it is a linear combination of IV
and JTIX. We include the end-of-month values of the jump factor in the regression instead of

JTIX. The results are reported in Table 7. The significance levels for the jump factor are not

20



much different from those for JTIX. The jump factor is significant at the 90% level for the

six-month and two-year horizons and at the 95% level for the one-year horizon. Overall, this

exercise suggests that IV does not have additional information useful to improve upon JTIX.

5.4 Tail risk, forward variance, and the quiet period

As our second exercise, we consider the importance of the tail index within the setup of BPS.

They find that the forward integrated variance implied from option prices predicts short-

horizon returns over horizons of one to six months. Their result is significant because, as noted

earlier, the VIX itself is not significant. We investigate whether the tail index adds additional

predictive power to the forward variance. Although the forward variance measures are also

constructed from OTM option prices, there is no mechanical relation between JTIX and the

forward variances such as between JTIX, V, and IV. The predictive regression is specified as

Rt+j − rft+j = α+ β1 · JTIXt/Vt + β2y
(1)
t + β3f

(2)
t + Γ′ · Z̄t + εt, (35)

where y(1)
t and f

(2)
t are the end-of-month forward variances proposed by BPS.11 Regarding

control variables Z̄t, we follow BPS in including the earnings yield (E/P )t and the term

spread (TERM). We also include the default spread (DEF ) as in earlier specifications for the

variance spread. All variables are sampled at the end of the month.

In this exercise, we follow BPS in focusing on the sample period of September 1998 to

September 2008. This sample period is interesting because (see Figure 2) it is a relatively

quiet period bookended by the LTCM and the post-Lehman peaks in the tail index. There

are two reasons to focus on this period. First, from an economic standpoint, we are especially

interested in understanding the compensation for tail risk in a non-crisis period but when

investors are well aware of the possibility of a tail event. This is the motivation underlying

the literature on consumption disasters (e.g., Rietz, 1988; Barro, 2006; Gabaix, 2012; Wachter,

2012). Second, fears of discontinuities in quiet times may be different from those in crises

times. For example, Figure 3 shows that in the immediate aftermath of the subprime crisis,

there is also risk of upside discontinuities. The quiet period puts the spotlight on downside

jump fears.

Panel A of Table 8 reports the results for JTIX/V (the results for JTIX lead to the same

11We thank George Panayotov for sharing the data on forward variances. BPS define y
(1)
t = − lnH

(t,1)
t ,

f
(2)
t = lnH

(t,1)
t − lnH

(1,2)
t , where H

(t,n)
t = e−rτnEQ

t exp
“
−
R t+τn
t

σ2
udu

”
. The terms τ1 and τ2 are the remaining

time to expiration for options expiring in the next two months, respectively.
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conclusion). As in BPS, we report results for short horizons up to six months. Consistent with

the findings of BPS, the forward variance f (2)
t significantly predicts returns over short horizons

up to three months. But, in addition, the jump and tail index is significant at 99% for the one-

and three-month horizons and at 90% for the six-month horizon. There is extremely strong

evidence that investors are willing to pay insurance over short horizons in quiet times.

As noted by BPS, the forward integrated variances are constructed under the assumption

of the absence of jumps (see Appendix A for further details on the relation between the forward

variance and jumps). Could it be that the high significance of JTIX is due to a jump-induced

bias in the forward variance? To check, we redo the regressions with the variance spread

constructed using the BKM variance for the period corresponding to the BPS study. The

results are reported in Panel B of Table 8. The significance and magnitude of the coefficients

are very similar to those estimated with the BPS forward variance in Panel A. Interestingly,

JTIX/V is significant at the one-month horizon even though V−RV is not significant for this

horizon in the quiet period. Thus, the economic significance of the tail index is not related

to any potential jump-induced bias in the BPS forward variance. Instead, the evidence is

consistent with investors’ fears of a downside tail event.

In summary, the evidence indicates that even in relatively quiet times, investors are con-

cerned about the possibility of a downside tail event over very short horizons. Investors fear

tail risk after accounting for stock return variability.

6 Conclusion

When the risk-neutral stock return process incorporates fears of discontinuities, both stock

return variability and the tail of the return distribution are determined by fears of jumps. To

distinguish between the two channels, it is important to have model-free volatility and tail

indices that clearly distinguish between the contribution of jumps to stock return volatility

and the impact of jumps on the tail of the distribution. This paper provides a novel way

of constructing a tail index that achieves this objective; time variation in volatility and tail

indexes can be distinguished, even though jumps impact the former and determine the latter.

Our jump and tail index is easily constructed from a portfolio of OTM options of 30-day

maturity, and can be economically interpreted as a short portfolio of risk reversals. The tail

index demonstrates extreme time variation in jump risk, with the intensity of jumps increasing

50-fold in times of crisis. Consequently, it is important to correctly account for jump risk

in estimating stock return volatility. In times of crisis, using the integrated variance as the
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measure of stock return variability can underestimate market variance by as much as 15%, the

variance spread by over 30%, and the predicted equity return by 40%. The tail index predicts

index returns after controlling for the variance spread or forward variance. Importantly, the

tail index is also significant at horizons as short as one-month in the relatively quiet period

between between the LTCM and the Lehman financial crises. The evidence indicates that

investors’ fear of downside tail events are incorporated into equity prices.

Our conclusion that the BKM measure of holding period variance is a more accurate mea-

sure of quadratic variation than the VIX in the presence of jumps has implications for volatility

derivative markets such as those of variance swaps. Besides indicating how the variance swap

can be hedged against the risk of discontinuities using a portfolio of risk-reversals, our analysis

suggests that payoffs of volatility derivatives should be based on the second moment of the

holding period return (square of summed log returns) as opposed to the quadratic variation

(sum of squared log returns).

Our empirical results indicate a role for both volatility and tail risk. It would be of interest

for future research to develop a model that provides a single framework for both these risks.

It would also be interesting to understand whether the risk premium associated with downside

jump risk is best understood as arising from risk of consumption disasters, or in terms of wealth

disasters resulting in a higher marginal utility of aggregate wealth.
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7 Appendix A: Proofs of results

Proof of Proposition 1
Given that lnSt is a semimartingale, the quadratic variation exists and is defined by stochastic
integration by parts:

(lnST /S0)2 = 2
∫ T

0
lnSt−/S0 d lnSt + [lnS, lnS]T . (A-1)

From the definition of the variance,

varQ
0 (lnST /S0) ≡ EQ

0 (lnST /S0)2 − (EQ
0 lnST /S0)2. (A-2)

From equations (A-1) and (A-2), it follows that D(T ) =
(

EQ
0 (lnST /S0)

)2
−EQ

0

[∫ T
0 2 lnSt−/S0 d lnSt

]
and that D = 0 if and only if 2EQ

0

∫ T
0 lnSt−/S0 d lnSt =

(
EQ

0 lnST /S0

)2
.

Proof of Proposition 1, part i.
Next, when lnSt/S0 = At +Mt with At deterministic and Mt a martingale,

EQ
0

∫ T

0
2 lnSt−/S0 d lnSt = EQ

0

∫ T

0
lnSt−/S0 Et d lnSt, (A-3)

=
∫ T

0
2At dAt, (A-4)

= (AT )2 =
(

EQ
0 lnST /S0

)2
. (A-5)

Therefore, D = 0. In the above equations, the first equality follows from the law of iterative
expectations and the second because Mt is a martingale. The third equality follows because
the drift is of finite variation with continuous paths (Theorem I.53 of Protter, 2004). This
proves Proposition 1, part i. �

Proof of Proposition 1, part ii.
For the stochastic volatility diffusion model defined by equations (12) and (13),

D(T ) = EQ
0

[∫ T

0
2 lnSt/S0 d lnSt

]
−
(

EQ
0 (lnST /S0)

)2
(A-6)

= I + II.

To study the speed of convergence of D(T ) when T → 0, we apply the Ito–Taylor expansion
(Milstein, 1995) to each term of D(T ) in equation (A-6). We define the operators L ≡ ∂

∂t +
(r− 1

2σ
2
t )

∂
∂(lnSt)

+θ[σ2
t ]

∂
∂(σ2

t )
+ 1

2σ
2
t

∂2

∂(lnSt)2
+ 1

2η
2[σ2

t ]
∂2

∂(σ2
t )

2 +ρσtη[σ2
t ]

∂2

∂(lnSt)∂(σ2
t )

, Γ1 ≡ σt ∂
∂(lnSt)

,

and Γ2 ≡ η[σ2
t ]

∂
∂(σ2

t )
. Noting that applying the Ito–Taylor expansion on a deterministic func-
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tion g(lnSt, σ2
t , t) yields g(lnSt, σ2

t , t) = g(lnS0, σ
2
0, 0)+

∫ t
0 (L[g]du+ Γ1[g]dW1,u + Γ2[g]dW2,u),

applying the expansion twice to the integral in term I of equation (A-6) yields∫ T

0
lnSt/S0 d lnSt =

∫ T

0
ln
St
S0

(r − 1
2
σ2
t )dt+

∫ T

0
ln
St
S0
σtdW1,t,

=
∫ T

0

∫ t

0

[
(r − 1

2
σ2
u)2 − 1

2
ln
Su
S0
θ[σ2

u]− 1
2
σuη[σ2

u]ρ
]
du dt

+
∫ T

0

∫ t

0
(r − 1

2
σ2
u)σudW1,udt−

1
2

∫ T

0

∫ t

0
ln
Su
S0
η[σ2

u]dW2,udt+
∫ T

0
ln
St
S0
σtdW1,t,

=
∫ T

0

∫ t

0

[
(r − 1

2
σ2

0)2 − 1
2
σ0η[σ2

0]ρ
]
du dt

+
∫ T

0

∫ t

0
(r − 1

2
σ2

0)σ0dW1,u dt−
1
2

∫ T

0

∫ t

0
ln
S0

S0
η[σ2

0]dW2,u dt+
∫ T

0
ln
St
S0
σtdW1,t

+A0, (A-7)

where A0 consists of terms such as
∫ T
0

∫ t
0

∫ v
0 L

2[·]dv du dt,
∫ T
0

∫ t
0

∫ v
0 Γ1 [L [·]] dW 1

v du dt, and so
on. With repeated applications of the Ito-Taylor expansion and using the martingale property
of the Ito integral, EQ

0 (A0) =
∑∞

n=0 h
n(σ2

0) T
n+3

(n+3)! , for deterministic functions hn, n ∈ {0, 1, 2...},
and, therefore, EQ

0 [A0] = O(T 3). Taking expectations and integrating, it follows that

EQ
0

∫ T

0
2 lnSt/S0 d lnSt =

[
(r − 1

2
σ2

0)2 − 1
2
σ0η[σ2

0]ρ
]
T 2 +O(T 3). (A-8)

We can similarly proceed to evaluate term II of equation (A-6) by applying the stochastic
Taylor expansion to the integral defining the log return process:

ln
St
S0

=
∫ T

0
(r − 1

2
σ2
t )dt+

∫ T

0

√
σ2
t dW

1
t ,

= (r − 1
2
σ2

0)T −
∫ T

0

∫ t

0

1
2
θ[σ2

u]du dt+
∫ T

0

∫ t

0
−1

2
η[σ2

u]dW2,u dt+
∫ T
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σ2
t dW

1
t ,

= (r − 1
2
σ2

0)T − T 2

4
θ[σ2

0] +
∫ T

0

∫ t

0
−1

2
η[σ2

u]dW2,u dt+
∫ T

0

√
σ2
t dW

1
t +A1, (A-9)

where A1 = O(T 3). Taking expectations,

EQ
0 (lnST /S0) = (r − 1

2
σ2

0)T − T 2

4
θ[σ2

0] +O(T 3). (A-10)

Combining equations (A-8) and (A-10), we have

D(T ) = EQ
0

∫ T

0
2 lnSt/S0 d lnSt −

(
EQ

0 ln
St
S0

)2

= −1
2
σ0η[σ2

0]ρT 2 +O(T 3). (A-11)

It follows that 1
TD(T ) is O(T ) and, when ρ = 0, 1

TD(T ) = O(T 2).

�
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Proof of Proposition 2
Given that jumps of all sizes have the same arrival intensity, it follows that EQ

0 2
∫ T
0

∫
R0 ψ(x)µ[dx, dt] =

2
∫ T
0 EQ

0

[∫
R0 ψ(x) f(x)dx

]
λtdt = 2Ψ(f(x))EQ

0

∫ T
0 λtdt , where Ψ(·) is determined by the jump

size distribution. �

Proof of Equation 6
To evaluate the integral, first observe from equation (3) that

EQ
0 ln(St−/S0) = (r − 1

2
σ2 − λµJ)t+ λαt. (A-12)

Therefore,

EQ
0

∫ T

0

2 ln(St−/S0) d lnSt = 2 EQ
0

[∫ T

0

ln(St−/S0) (r − 1
2
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,

= 2
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0
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2
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[
.

∫ T

0

∫
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0 (ln(St−/S0))x

λ√
2πσ2

J

e−
(x−α)2

2 dxdt

]
,

=
(

(r − 1
2
σ2 − λµJ) + λα

)2

T 2,

=
(

EQ
0 ln(St−/S0)

)2

. (A-13)

Therefore, for the Merton model, EQ
0

∫ T
0 2 ln(St−/S0) d lnSt =

(
EQ

0 ln(St−/S0)
)2

. �

Proof of equation 15, D(T ) = 1
4var

∫ T
0 σ2

t dt for a stochastic volatility diffusion with ρ = 0
Let lnST /S0 be a continuous semimartingale,

lnST = lnS0 +
∫ T

0
(r − 1

2
σ2
t )dt+

∫ T

0
σtdW1,t, (A-14)

where σ2
t is another continuous semimartingale, orthogonal to W1,t. By the law of total vari-

ance,

varQ
0 (lnST /S0) = varQ

0

(
EQ

0 lnST /S0 | {σ2
t }0≤t≤T

)
+ EQ

0

(
varQ

0 (lnST /S0) | {σ2
t }0≤t≤T

)
.

(A-15)
Now, from equation(A-14),

varQ
0

(
EQ

0 lnST /S0 | {σ2
t }(0≤t≤T )

)
=

1
4

varQ
0

∫ T

0
σ2
t dt, (A-16)
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and

EQ
0

(
varQ

0 (lnST /S0) | {σ2
t }
)

= EQ
0

∫ T

0
σ2
t dt (A-17)

from Ito isometry. Putting this together into (A-15) and given that the quadratic variation for
the diffusion process is the integrated variance,

∫ T
0 σ2

t dt, we obtain

D(T ) = varQ
0 (lnST /S0)− EQ

0 [lnS, lnS]T =
1
4

varQ
0

∫ T

0
σ2
t dt. (A-18)

Thus, if the stochastic volatility process is independent of W1,t, then D(T ) is proportional to
the variance of the integrated variance. �

Power claim of Carr and Lee (2008) in presence of jumps
First, following Carr and Lee (2008), assume there are no discontinuities and that the volatility
process, σt, is independent of the diffusion determining the log stock process, W1,t. Without
loss of generality, we can also assume that the risk-free rate is zero. If so,

lnST /S0 =
∫ T

0
−1

2
σ2
t dt+

∫ T

0
σtdW1,t (A-19)

and, therefore, the power claim,

EQ
0 exp(p lnST /S0) = EQ

0 exp
(∫ T

0
−p

2
σ2
t dt+

∫ T

0
pσtdW1,t

)
, (A-20)

= EQ
0 exp

(
(
p2

2
− p

2
)
∫ T

0
σ2
t dt

)
. (A-21)

BPS use this theory to estimate EQ
0

(
exp(

∫ T
0 σ2

t dt
)

from option prices.12 Now relax the as-
sumption of no discontinuities by adding Merton-style jumps, following Section 2,

EQ
0 exp (p lnST /S0) = EQ

0 exp

(∫ T

0

−p
2
σ2dt−

∫ T

0

pλµJ dt+
∫ T

0

pσ dWt +
∫ T

0

∫
R0
pxµ[dx, dt]

)
.

(A-22)

12 Because the volatility process is independent of W1,t, the log return is normally distributed with mean and

variance equal to − 1
2

R T
0
σ2
t dt and

R T
0
σ2
t dt, respectively, leading to equation (A-21). We can rewrite equation

(A-21) as

exp

„
λ̄

Z T

0

σ2
t dt

«
= EQ

0 (ST /S0)
1
2±
√

1
4 +2λ̄.

Because the power claim (ST /S0)p can be synthesized from options, we can estimate the price of a claim paying
the exponential of the integrated variance. In addition, Carr and Lee (2008) demonstrate that a properly
chosen portfolio of power claims is not sensitive to a non-zero correlation. Following the Carr–Lee analysis, BPS
consider the case for λ̄ = −1.
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We can re-write equation A-22 using the definition of quadratic variation to get,

EQ
0 exp (p lnST /S0) = EQ

0

[
exp

(
−p

2
[lnS, lnS]T +

∫ T

0

pσ dWt

)
exp

(
−
∫ T

0

pλµJ dt+
∫ T

0

∫
R0

(px+
p

2
x2)µ[dx, dt]

)]
.

(A-23)
A comparison of equation (A-23) with equation (A-20) demonstrates that the power claim can
measure the quadratic variation without bias only if jumps are absent. �
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8 Appendix B: Description of Data

In line with previous literature, we clean the data using several filters. First, we exclude options
that have (i) missing implied volatility in OptionMetrics, (ii) zero open interest, and (iii) bids
equal to zero or negative bid–ask spreads. Second, we verify that options do not violate the no-
arbitrage bounds. For an option of strike K maturing at time T with current stock price St and
dividend D, we require that max(0, St−PV [D]−PV [K]) ≤ c(St;T,K) ≤ St−PV [D] for Euro-
pean call options and max(0, PV [K]− (St−PV (D))) ≤ p ≤ PV [K] for European put options,
where PV [·] is the present value function. Fourth, if two calls or puts with different strikes
have identical mid-quotes, that is, c(St;T,K1) = c(St;T,K2) or p(St;T,K1) = p(St;T,K2),
we discard the one furthest away from the money quote. Finally, we keep only OTM options
and include observations for a given date only if there are at least two valid OTM call and put
quotes. Table B.1 provides summary statistics of the final sample.

Table B.1. Option data
This table reports the summary statistics of all options used to construct a 30-day JTIX with a daily
frequency. The variable Implied volatility is the Black–Scholes implied volatility; Range of Moneyness
on a certain date for a given underlying asset is defined as (Kmax −Kmin)/Katm, where Kmax, Kmin,
and Katm are the maximum, minimum, and at-the-money strikes, respectively; near term refers to
options with the shortest maturity (but greater than seven days) on each date; and next term refers to
options with the second shortest maturity on each date. The sample period is from January 1996 to
October 2010.

Near Term Next Term
MEAN SD MIN MAX MEAN SD MIN MAX

# of options per date 46 23 13 135 45 28 11 136
Range of moneyness per date 37% 15% 10% 137% 48% 18% 13% 153%
Option price 5.53 7.44 0.08 68.10 10.25 11.50 0.08 84.05
Implied volatility 28.02% 15.50% 4.88% 183.33% 26.64% 13.32% 6.69% 181.76%
Maturity 22 9 7 39 51 9 14 79
Trading volume 2,186 5,374 0 200,777 957 2,885 0 120,790
Open interest 19,465 30,566 1 366,996 119,72 22,640 1 348,442
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Table 1. Numerical comparison: EQ[lnS, lnS]T , V, and IV
Numerical comparison of annualized expected quadratic variation EQ[lnS, lnS]T with V (holding period
variance) and IV (integrated variance) for the jump diffusion model of Merton (1976) (Panel A) and
the jump diffusion and stochastic volatility (SVJ) model of Bates (2000) (Panel B). The specification
for the Merton model is d lnSt = (r − µJλ − 1

2σ
2) dt + σdWt + x dJt, where x ∼ N(α, σ2

J), and
µJ = eα+ 1

2σ
2
J − 1. The specification for the SVJ model is: d lnSt = (r− 1

2σ
2
t −λµJ)dt+σtdW

1
t +x dJt,

dσ2
t = κ(σ2

t − θ)dt + ησtdW
2
t , where corr(dW 1

t , dW
2
t ) = ρ, x ∼ N(α, σ2

J) and λ = λ0 + λ1 · σ2
t . The

parameters are from Pan (2002): λ0 = 0, λ1 = 12.3 (for Merton’s model, λ = λ1 · 0.04), σJ = 0.0387,
κ = 3.3, θ = 0.0296, η = 0.3, and ρ = −0.53. In addition, the risk-free rate r = 0.03 and time to
maturity τ = 30/365. The remaining parameters are shown in the table. The first column denotes
the contribution of jumps to the total variance, defined as the holding period variance of the pure
jump component of the stochastic process divided by the holding period variance of the combined jump
diffusion process.

Panel A. Merton model
IV− [lnS, lnS]T

varJump
var σ2

0 α EQ[lnS, lnS]T V IV Absolute Relative (%)
0% 0.0400 0.0000 0.0400 0.0400 0.0400 0.0000 0.00
10% 0.0360 -0.0814 0.0400 0.0400 0.0399 -0.0001 -0.36
20% 0.0320 -0.1215 0.0400 0.0400 0.0396 -0.0004 -0.92
30% 0.0280 -0.1513 0.0400 0.0400 0.0393 -0.0007 -1.63
40% 0.0240 -0.1761 0.0400 0.0400 0.0390 -0.0010 -2.44
50% 0.0200 -0.1979 0.0400 0.0400 0.0387 -0.0013 -3.36
60% 0.0160 -0.2174 0.0400 0.0400 0.0383 -0.0017 -4.36
70% 0.0120 -0.2354 0.0400 0.0400 0.0378 -0.0022 -5.43
80% 0.0080 -0.2521 0.0400 0.0400 0.0374 -0.0026 -6.58
90% 0.0040 -0.2677 0.0400 0.0400 0.0369 -0.0031 -7.80

Panel B: SVJ model
IV− [lnS, lnS]T V− [lnS, lnS]T

varJump
var σ2

0 α EQ[lnS, lnS]T V IV Absolute Relative (%) Absolute Relative (%)
0% 0.0415 0.0000 0.0400 0.0402 0.0400 0.0000 0.00 0.0002 0.61
10% 0.0369 -0.0868 0.0400 0.0402 0.0399 -0.0001 -0.37 0.0002 0.61
20% 0.0323 -0.1372 0.0400 0.0402 0.0396 -0.0004 -1.01 0.0002 0.60
30% 0.0278 -0.1826 0.0400 0.0402 0.0392 -0.0008 -1.89 0.0002 0.59
40% 0.0232 -0.2296 0.0400 0.0402 0.0388 -0.0012 -3.04 0.0002 0.58
50% 0.0186 -0.2825 0.0400 0.0402 0.0382 -0.0018 -4.54 0.0002 0.57
60% 0.0141 -0.3471 0.0400 0.0402 0.0374 -0.0026 -6.52 0.0002 0.55
70% 0.0095 -0.4338 0.0400 0.0402 0.0363 -0.0037 -9.24 0.0002 0.52
80% 0.0049 -0.5690 0.0400 0.0402 0.0347 -0.0053 -13.34 0.0002 0.47
90% 0.0004 -0.8545 0.0400 0.0401 0.0316 -0.0084 -21.04 0.0001 0.36
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Table 5. Predicted excess log return by V− RV and IV− RV
Panel A reports the mean values of the variance spreads V − RV and IV − RV, respectively. Panel
B reports the means of the excess log returns predicted by V − RV and IV − RV, respectively. The
predicted return for each observation date is computed as the multiple of the variance spread’s mean
value and the coefficient in the multivariate regression reported in Panel D of Table 4. The full sample
period is from January 1996 to October 2010. The NBER-defined recession periods are from March 2001
to November 2001 and from December 2007 to June 2009. Subprime recession refers to the recession
of December 2007 through June 2009.

Panel A. Summary Statistics of Variance Spreads
Full NBER NBER Subprime

Period Non-recession Recession Recession
V− RV Mean 0.0310 0.0295 0.0390 0.0402
IV− RV Mean 0.0276 0.0272 0.0299 0.0283

Panel B. Summary Statistics of Predicted Return
Full NBER NBER Subprime

Period Non-recession Recession Recession
V− RV Mean 6.10% 5.81% 7.67% 7.91%
IV− RV Mean 4.60% 4.53% 4.97% 4.71%
Difference Mean 1.50% 1.28% 2.70% 3.19%

Table 6. Tail risk and variance spread
This table presents the predictive regression results for the S&P 500 excess returns for horizons of one
month, three months, six months, one year, and two years, respectively. Here JTIX is the tail index, V
is the variance of the holding period return, RV is the realized variance, log(P/D) is the logarithm of
the price–dividend ratio on the S&P 500, TERM is the difference between the 10-year and three-month
Treasury yields, and DEF is the difference between Moody’s BAA and AAA bond yields. The sample
period is from January 1996 to October 2010. All regressions are monthly, using the end-of-month
values of the variables. The t-statistics, computed using Hodrick’s (1992) 1B standard errors under
the null of no predictability, are reported in parentheses. The joint p-value—based on Hodrick’s (1992)
standard errors—denotes the p-value for the null hypothesis that slope coefficients are jointly equal
to zero. The adjusted coefficient of determination is denoted as Adj.R2, and Obs. is the number of
observations.

JTIX JTIX/V

1m 3m 6m 12m 24m 1m 3m 6m 12m 24m

Const 0.2695 0.6885 1.2044 2.2305 3.8151 Const 0.2703 0.7037 1.1360 2.0918 3.7257
(3.33) (2.78) (2.34) (2.33) (2.10) (3.41) (2.86) (2.26) (2.23) (2.04)

JTIX 0.5846 0.5782 5.9869 10.4118 16.9312 JTIX/V 0.3408 0.6798 1.6049 2.2377 3.6686
(0.66) (0.24) (1.58) (2.44) (1.90) (1.49) (1.24) (2.01) (1.80) (1.94)

Vt − RVt−1 0.3902 1.2029 1.6788 1.8767 2.2806 Vt − RVt−1 0.3812 1.1801 1.6626 1.8596 2.4368
(2.28) (3.65) (3.68) (2.48) (2.08) (2.23) (3.63) (3.73) (2.55) (2.17)

log(P/D) -0.0598 -0.1561 -0.2708 -0.5080 -0.8735 log(P/D) -0.0620 -0.1628 -0.2695 -0.4990 -0.8977
(-3.20) (-2.74) (-2.30) (-2.30) (-2.04) (-3.34) (-2.85) (-2.31) (-2.29) (-2.09)

TERM -0.0771 -0.3933 -0.2654 1.5407 13.0291 TERM -0.0608 -0.3309 -0.3351 1.4050 12.8059
(-0.27) (-0.47) (-0.17) (0.55) (2.48) (-0.21) (-0.39) (-0.21) (0.49) (2.46)

DEF -3.6550 -7.8845 -15.7045 -25.2462 -53.4272 DEF -4.0540 -9.3464 -13.9340 -20.5195 -43.5458
(-2.33) (-1.95) (-2.25) (-2.12) (-2.19) (-2.87) (-2.38) (-1.95) (-1.75) (-2.26)

Joint p-value 0.0048 0.0011 0.0015 0.0140 0.0022 Joint p-value 0.0018 0.0010 0.0018 0.0114 0.0111
Adj.R2 8.6% 23.4% 27.5% 32.8% 63.3% Adj.R2 9.9% 25.3% 27.5% 30.2% 61.0%
Obs. 178 177 174 168 156 Obs. 178 177 174 168 156
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Table 7. Jump factor from principal component analysis
This table presents the predictive regression results for the S&P 500 excess returns for horizons of
one month, three months, six months, one year, and two years, respectively. The jump factor is the
principal component extracted from a principal component analysis of JTIX and IV that is the most
highly correlated with JTIX. V is the variance of the holding period return, RV is the realized variance,
log(P/D) is the logarithm of the price–dividend ratio on the S&P 500, TERM is the difference between
the 10-year and three-month Treasury yields, and DEF is the difference between Moody’s BAA and
AAA bond yields. The sample period is from January 1996 to October 2010. All regressions are monthly,
using the end-of-month values of the variables. The t-statistics are computed using Hodrick’s (1992)
1B standard errors under the null of no predictability and are reported below the coefficients. The joint
p-value—based on Hodrick’s (1992) standard errors—denotes the p-value for the null hypothesis that
the slope coefficients are jointly equal to zero. The adjusted coefficient of determination is denoted as
Adj.R2, and Obs. is the number of observations.

1m 3m 6m 12m 24m

Const 0.2701 0.6869 1.1750 2.1729 3.6970
(3.43) (2.80) (2.31) (2.28) (2.03)

Jump factor 0.0050 0.0041 0.0386 0.0647 0.0930
(0.89) (0.27) (1.74) (2.41) (1.81)

Vt − RVt−1 0.4304 1.2371 2.0020 2.4181 3.0975
(2.59) (3.40) (3.83) (2.69) (2.26)

log(P/D) -0.0595 -0.1554 -0.2623 -0.4923 -0.8467
(-3.23) (-2.74) (-2.25) (-2.25) (-1.98)

TERM -0.0564 -0.3808 -0.1784 1.6769 13.0962
(-0.20) (-0.46) (-0.11) (0.59) (2.48)

DEF -3.8232 -7.9186 -15.3518 -24.2507 -49.3912
(-2.44) (-2.00) (-2.18) (-2.01) (-2.13)

Joint p-value 0.0034 0.0011 0.0015 0.0139 0.0040
Adj.R2 9.0% 23.5% 28.6% 33.8% 62.5%
Obs. 178 177 174 168 156
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Table 8. Tail risk, forward variance, and the quiet period
This table gives the predictive regression results for the S&P 500 excess returns for horizons of one
month, three months, and six months, respectively, using the setup of Bakshi, Panayotov and Skoulakis
(2011). The terms y(1)

t and f (2)
t are the forward variances of BPS, E/P is the earnings yield on the S&P

500, log(P/D) is the logarithm of the price–dividend ratio on the S&P 500, TERM is the difference
between the 10-year and three-month Treasury yields, and DEF is the difference between Moody’s BAA
and AAA bond yields. The sample period is September 1998 to September 2008. All regressions are
monthly, using the end-of-month values of the variables. The t-statistics are computed using Hodrick’s
(1992) 1B standard errors under the null of no predictability and are reported below the coefficients. The
joint p-value—based on Hodrick’s (1992) standard errors—denotes the p-value for the null hypothesis
that slope coefficients are jointly equal to zero. Here Adj.R2 is the adjusted coefficient of determination
and Obs. is the number of observations.

Panel A: JTIX and forward variance

1m 3m 6m

Const -0.0844 -0.1320 -0.1097
(-2.34) (-1.22) (-0.62)

JTIX/V 0.6316 1.1785 1.4226
(3.90) (2.77) (1.87)

y
(1)
t -3.7747 1.6240 -0.9592

(-1.30) (0.40) (-0.16)
f

(2)
t 8.2915 9.7426 15.3071

(2.62) (2.16) (2.15)
(E/P ) 5.3461 10.5793 15.1138

(3.58) (2.61) (2.42)
TERM 0.8413 2.1704 3.7770

(1.84) (1.70) (1.68)
DEF -4.2335 -14.1601 -28.5277

(-2.13) (-2.49) (-2.77)
Joint p-value 0.0000 0.0000 0.0001
Adj.R2 19.9% 24.9% 29.0%
Obs. 121 121 121

Panel B: JTIX and variance spread

1m 3m 6m

Const 0.2969 0.7453 1.3032
(-2.42) (-2.17) (-1.83)

JTIX/V 0.6242 1.0533 1.2447
(2.05) (1.99) (1.91)

V− RV 0.3078 1.0786 1.4422
(1.09) (2.58) (2.38)

log(P/D) -0.0632 -0.1507 -0.2519
(-2.17) (-1.89) (-1.55)

TERM 0.0601 0.3918 1.4148
(0.22) (0.48) (0.90)

DEF -7.2941 -21.1581 -40.4298
(-2.62) (-2.72) (-2.86)

Joint p-value 0.0283 0.0294 0.0364
Adj.R2 11.8 25.9 30.9
Obs. 121 121 121
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